Front Vent 1.0

I’ve decided to move forward with the modifications to the side of the car discussed in a previous post. The first step was to refine variant 2.6. The image below shows thee vent height options.

Vent-Height-Variations.jpg

A1: Keeps the stock vent height and is the easiest to implement because no changes are required to the nose or door.

A2: Extends the vents upwards, but leaves about an inch of body between the vents and the nose and tail split lines. The door and the nose need to be modified, but the AeroCatches which latch the nose and tail remain in their stock locations. While the body between the vents and split lines makes latching easy to implement, it clutters the aesthetics.

A3: Extends the vents upwards all of the way to split lines. This results in the cleanest aesthetics, but it requires the latching locations to be re-engineered and is a lot more work than the previous variants. Funny how that always seems to be the case.

So which am I going to do? A3 — the most involved of course.

Today I made some initial cuts to implement the front vent… there’s no going back now! The AeroCatch and rear locating pin (A) were completely removed. Filling the curved vertical section (D) will be easy. I just need to bolt a curved non-stick piece of plastic to the outside and patch from the inside.

IMG_7712 Annotated.jpg

I left a portion of the flange that the nose sits on in place because the bottom side of the nose flange needs to clear the door hinge and the side of the spider when it is raised and lowered and something needs to seal the nose from the exterior. This flange will likely get cut back further and I’m wondering if I should create a large fillet to blend its underside into vertical section D.

The AeroCatch will fit into section C if it’s oriented transversely. However, that orientation places the pin more inboard than desirable which may cause the strike pin to scrape the side of the spider. The factory body fitment had that issue on the right side and the scrapes can be seen in B. For this reason, I’m going to replace the AeroCatch with a Quick-Latch QL-35. Even if I trim the flange off of the end of the AeroCatch, the center of the pin is 1.5” from the edge whereas the Quick-Latch is 0.9” with the flange in tact. In addition, the Quick-Latch installs with a single 1.25” hole saw whereas the AeroCatch requires a more complex oblong cutout and six mounting holes. Each Quick-Latch is rated for 500 pounds, so they should be more than strong enough.

The biggest question at this point is what to do with piece C. If left as is, I will need to reinforce it (glass it to the curved vertical piece) and close the curved back edge (red lines). IMO it will look bulky and getting the back edge finished properly will be tricky. Another option is to raise piece C. The Quick-Latch requires a minimum depth of 1.2” which would allow me to reduce the distance to the part line by at least half. Getting the curved back edge to look right would be easier because it’s smaller and less visible. That said, I’d need to make a simple mold. I ordered a set of Quick-Latches and I’m going to reflect on things before cutting any more.

The door consists of an inner and outer shell which are bonded together at the factory. Fortunately, there is a fair amount of space between the two pieces which allowed me to cut the outer shell. I ground the dark-gray adhesive on the front edge because I assume that epoxy/fiberglass is stronger and I’m not sure how well the adhesive would blend with fiberglass or hold paint. As can be seen in the profile picture, there is plenty of room for epoxy/fiberglass to add strength and micro balloon mix to create the profile. The top edge of the door is thin near the top of the cut, but I can easily add fiberglass to the inside of the door there.